Miniature Autonomous Rockets

Pico air vehicles (PAVs), sub-5cm aerial vehicles, are becoming more feasible due to advances in wireless mesh networks, millimeter-scale propulsion, battery technology, and MEMS control surfaces. Our goal is to develop an aerodynamic MEMS control surface that could be used in PAV applications. This device uses electrostatic inchworm motors to rotate a thin silicon fin 10 degrees. We measured 1.6 uNm of output torque generated by the actuator. In order to determine the aerodynamic performance of the device, we integrated the control surface into a force-sensing platform and operated the device in 23 m/s of airflow. The actuated control surface generated between 0 and 0.25 mN of aerodynamic lift. In order to power this actuator on an untethered PAV, we designed a compact, LiPo battery- powered 90 V power supply PCB that fits in a 3.8 cm x 1.5 cm footprint. We also designed a 20-cm long rocket with onboard power, inertial guidance, and feedback control that we will use as a test platform for the MEMS control surfaces. Our long-term goal is to integrate the MEMS control surface, power supply PCB, and a single chip micromote into an autonomous millimeter-scale rocket.


  • Brian G. Kilberg
  • Daniel Contreras


  • Kristofer S.J. Pister